Adaptive categorization of sound frequency does not require the auditory cortex in rats.
نویسندگان
چکیده
A defining feature of adaptive behavior is our ability to change the way we interpret sensory stimuli depending on context. Rapid adaptation in behavior has been attributed to frontal cortical circuits, but it is not clear if sensory cortexes also play an essential role in such tasks. In this study we tested whether the auditory cortex was necessary for rapid adaptation in the interpretation of sounds. We used a two-alternative choice sound-categorization task for rats in which the boundary that separated two acoustic categories changed several times within a behavioral session. These shifts in the boundary resulted in changes in the rewarded action for a subset of stimuli. We found that extensive lesions of the auditory cortex did not impair the ability of rats to switch between categorization contingencies and sound discrimination performance was minimally impaired. Similar results were obtained after reversible inactivation of the auditory cortex with muscimol. In contrast, lesions of the auditory thalamus largely impaired discrimination performance and, as a result, the ability to modify behavior across contingencies. Thalamic lesions did not impair performance of a visual discrimination task, indicating that the effects were specific to audition and not to motor preparation or execution. These results suggest that subcortical outputs of the auditory thalamus can mediate rapid adaptation in the interpretation of sounds.
منابع مشابه
Discrimination of brief speech sounds is impaired in rats with auditory cortex lesions.
Auditory cortex (AC) lesions impair complex sound discrimination. However, a recent study demonstrated spared performance on an acoustic startle response test of speech discrimination following AC lesions (Floody et al., 2010). The current study reports the effects of AC lesions on two operant speech discrimination tasks. AC lesions caused a modest and quickly recovered impairment in the abilit...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملAuditory thalamus and auditory cortex are equally modulated by context during flexible categorization of sounds.
In a dynamic world, animals must adapt rapidly to changes in the meaning of environmental cues. Such changes can influence the neural representation of sensory stimuli. Previous studies have shown that associating a stimulus with a reward or punishment can modulate neural activity in the auditory cortex (AC) and its thalamic input, the medial geniculate body (MGB). However, it is not known whet...
متن کاملProlonged sound exposure has different effects on increasing neuronal size in the auditory cortex and brainstem.
Tone at moderate levels presented to young rats at a stage (postnatal week-4) presumably that has passed the cortical critical period still can enlarge neurons in the auditory cortex. It remains unclear whether this delayed plastic change occurs only in the cortex, or reflects a change taking place in the auditory brainstem. Here we compared sound-exposure effects on neuronal size in the audito...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 114 2 شماره
صفحات -
تاریخ انتشار 2015